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Abstract.  
Transforming Growth Factor beta (TGFβ) cytokine plays an 
important role in normal pulmonary morphogenesis and 
function as well as in the pathogenesis of lung diseases. 
The principal signaling pathway downstream to activate 
TGFβ is the Smad pathway. Even though many studies 
have focused on Smads’ structural features and pathway, 
less is known about the possible relationship between pro-
tein and mRNA expression of Smads and lung diseases. 
This review will focus on Smads and sum up what is know 
about their role in some respiratory diseases: COPD, 
asthma and fibrosis. 
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Riassunto.  
La citochina TGFβ (Transforming Growth Factor beta) gio-
ca un ruolo importante nella normale morfogenesi e funzio-
ne polmonare nonchè nella patogenesi delle malattie respi-
ratorie. Il principale pathway di trasduzione del segnale in-
dotto dal TGFβ attivato è quello degli Smads. Anche se 
molti studi si sono soffermati sull’analisi delle caratteristi-
che strutturali e sui meccanismi alla base del pathway, po-
co si sa circa la possibile correlazione tra l’espressione 
proteica e trascrizionale degli Smads e le patologie polmo-
nari. Questa review analizzerà le caratteristiche degli 
Smads e riassumerà le informazioni riguardanti il loro ruolo 
nelle patologie respiratorie: asma, COPD e fibrosi. 
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Introduction 
COPD (Chronic Obstructive Pulmonary Dis-
ease) is characterised by a slow, progressive 
and partially reversible airflow limitation, which 
is associated with an abnormal inflammatory 
response of the lung to noxious particles or 
gases. The pathological hallmarks of COPD are 
typical of the principal lung diseases: mucus 
hypersecretion and submucosal gland hyper-
plasia (chronic bronchitis), collapsed airways 
and destruction of airways parenchyma 
(emphysema), tightening of the muscles around 
the airways (chronic asthma) followed by tissue 
damage and inflammation of small airways and 
fibrosis (1). TGFβ appears to be directly in-
volved in the development and maintenance of 

pulmonary diseases. TGFβ superfamily con-
sists of secreted growth factors regulating dif-
ferent cellular process such as cell growth, de-
velopment, differentiation, proliferation, motility, 
adhesion and apoptosis (Table 1) (2-4). Mem-
bers of this family are secreted as latent forms, 
due to the presence of a propeptide, or in 
trapped form by binding to occluding factors. 
The active form is a dimer able to initiate signal 
by binding to a specific pair of membrane ser-
ine/threonine kinases receptors, type I and type 
II receptor. Destruction of the TGFβ signaling 
system has been implicated in embryonic 
anomalies (5-8), cancer and tumorigenesis 
(4,9), autoimmune diseases (10-13), athero-
sclerosis (14-16), hypertension (17), osteoporo-



sis (18), fibrotic disease (9-19) and hereditary 
hemorrhagic telangiectasia (20-21). These 
pathological states suggest a possible involve-
ment of Smads/TGFβ signaling in development 
and maintenance of these pathological condi-
tions. 
 
Basic features of Smads 
The name “Smad” was coined in reference to 
its sequence similarity to the Sma and Mad pro-
teins. Eight Smad proteins are encoded in the 
human and mouse genome, four in Drosophila 
and three in C. Elegans (22). Only five of the 
mammalian Smads (Receptor-regulated Smads 
or R-Smads: Smad1, Smad2, Smad3, Smad5 
and Smad8) act as substrates for the TGFβ 
family’s receptors; specifically Smad1, 5, and 8 
serve principally as substrates for the BMP 
(Bone Morphogenetic Protein) and anti-
Muellerian receptors, Smads2 and 3 for the 
TGFβ, activin, and nodal receptors. Co-Smad 
Smad4 serves as a common partner for all R-
Smads while Smad6 and 7 are inhibitory 
Smads (I-Smads) that serve as decoys interfer-
ing with Smad–receptor or Smad–Smad interac-
tions (23). Functional studies, together with the 
X-ray crystal structure analysis, showed that 
these ~500 amino acids proteins consist of two 
conserved globular domains (MH1 and MH2 
domains) coupled by a flexible linker region rich 
of binding sites for Smurf (Smad ubiquitination-
related factors) ubiquitin ligase, of phosphoryla-
tion sites for several classes of protein kinases 
and, in Smad4, a nuclear export signal (NES) 
involved in nucleus-cytoplasmatic translocation 
(23). The MH1 domain is conserved in all R-
Smads and in Co-Smad, but not in I-Smads 
and functions as a DNA-binding site, while the 
MH2 domain is conserved in Smad proteins 
and involved in Smad-Smad interaction and in 
R-Smad activation/phosphorylation. Binding of 
TGFβ to the type I receptor triggers phosphory-
lation of its cytoplasmatic GS domain by the 
type II receptor, thus creating a repeated pS-X-
pS motif, that serves as a docking site for the 
R-Smads. The latter are presented to the acti-
vated type I receptor by the anchor protein 
SARA (Smad Anchor for Receptor Activation). 

In the basal state, Smads form homoligomers 
and remain in an inactive conformation until 
both activated R-Smads and Smad4 form 
homotrimeric complexes (24,25). In this state 
R-Smads decrease their affinity for SARA, and 
the R-Smad/Smad4 complex is translocated 
into the nucleus, where can directly bind DNA 
with DNA promoters or interact with transcrip-
tion factors or co-factors (26,27) (Figure 1). 
Smads activation and downstream targets acti-
vation can be regulated in both cytoplasmatic 
and nuclear compartments by different mecha-
nisms including inhibitory Smads activation 
(28), ubiquination (29), acetylation (30), sumoy-
lation (31) and, as recently reported, dephos-
phorylation by PPM subfamily phosphatases 
(PPM1A, PPM1B and SCP1) (32,33).  
 
TGFβ and lung disease: role of Smads 
Injury of lung tissue leads to induction of TGFβ 
that limits some inflammatory reactions. It is 
also involved in mediating fibrotic tissue remod-
elling, by increasing the production and de-
creasing the degradation of connective tissue, 
and acts mediating the normal tissue repair 
(34). In several studies, TGFβ has been shown 
to be a marker of activity of tissue repair and 
remodelling; acute, as well as chronic, lung dis-
eases showed an increase of TGFβ protein and 
mRNA expression during the phase of tissue 
remodelling (35-36). Disruption of the TGFβ 
signaling system has been shown to be in-
volved in different pulmonary diseases such as 
COPD and pulmonary fibrosis. 
 
Fibrosis 
The direct involvement of TGFβ in fibrosis has 
been observed during several studies on fi-
brotic diseases. The prominent hypothesis of 
fibrosis development is that it is caused by 
chronic inflammation in response to an un-
known etiologic agent, leading to tissue de-
struction, ongoing wound healing responses, 
and fibrosis (37). TGFβ is a critical element of 
progression from inflammation to chronic fibro-
sis. The pro-fibrotic effects of TGFβ are numer-
ous, including induction of myofibroblasts, in-
crease of matrix synthesis, and inhibition of col-
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Endothelium Epithelium Fibroblasts 

Migration 
Morphogenesis55 

Growth control56 

Cell cycle arrest 
Apoptosis 55, 57 

Adhesion 
ECM production58 

Cytochine production 
Growth control56 

Epithelial-mesenchymal transi-
tion (EMT)59 

ECM production58,60 

Proliferation61,62,63 

Cytokine secretion 
Anchorage-independent growth64 
Growth arrets56,65 

 

Tab. 1: TGFβ regulatory effects on target cells. 



lagen breakdown. Most of these effects are me-
diated through the Smad signaling pathway. 
Smad3 is principally related to fibrotic pheno-
type. Smad3 pathway is involved in pathogenic 
mechanisms mediating tissue destruction (lack 
of repair) and fibrogenesis (excessive repair); 
Smad3 null mice are protected from progres-
sive fibrosis mediated by overexpression of 
TGFβ1 (38), do not develop lung fibrosis in-
duced by bleomycin (39), and are protected 
against radiation-induced fibrosis of the skin 
(39). In a study by Gauldie and colleagues (41), 
administration of active TGFβ to mice deficient 
in Smad3, blocked the ability of TGFβ to induce 
matrix gene expression, enzyme inhibitors’ 
gene expression and matrix accumulation, thus 
not progressing to scar formation or fibrosis. 
This indicates that TGFβ and Smad signalling 
pathway, specifically Smad3, are required to 
initiate fibrosis and that mechanisms inducing 
expression of this growth factor are prominent 
in this disease. Loss of Smad3 was shown to 
confer resistance to fibrosis and resulted in re-
duced inflammatory cell infiltrates, reduced 
autoinduction of TGF-β (important to sustain 
the process) and reduced elaboration of colla-
gen. Also, the key cellular mechanism of fibro-
sis is associated with myofibroblasts transdiffer-

entiation; myofibroblasts are generated from 
resident mesenchymal cells, endothelial and 
epithelial cells (epithelial-mesenchymal transi-
tion-EMT) (42); TGFβ stimulates myofibroblast 
transdifferentiation through Smad3-dependent 
and -independent signals, contributing to the 
excessive matrix deposition that characterizes 
obliterative bronchiolitis. A significantly reduced 
expression of the Smad3 protein was observed 
in cystic fibrotic epithelial cells of nasal epithe-
lium, and this reduction was apparently suffi-
cient to influence the transmission of TGFβ sig-
nals, including anti-inflammatory signals. (43). 
 
COPD and Asthma 
Less is known about the direct involvement of 
Smad proteins in COPD, even though various 
studies have shown that TGFβ is involved in 
airways remodelling which characterize this dis-
ease. TGFβ1 protein and mRNA expression 
were increased in the bronchial and alveolar 
epithelium of COPD patients and correlated 
with the number of intraepithelial macrophages 
(44). Elevated levels of TGFβ1 have been ob-
served in bronchial epithelium of smokers with 
COPD compared with those without COPD 
(45). Springer et colleagues (46) demonstrated 
that cigarette smoke down-regulates the inhibi-
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Fig. 1: Molecular mechanism of Smads pathway. 1) Binding of TGFβ to the type I and type II re-
ceptors, induces formation of multimeric receptors. 3-4 ) Activated R-Smads dissociate from the 
receptor/SARA complex and form an oligomeric complex with Co-Smad Smad4. 5-6-7) The com-
plex R-Smad/Co-Smad traslocates to the nucleus where it can interact with transcription factors or 
directly with DNA in Smad Binding Elements (SBE). 8) Gene target transcription is activated. 9) I-
Smads (Smad7) inhibits signals competing with R-Smads for interacting with type I receptor and 
prevending phosphorylation. 



tory Smad6 and 7 transcription in bronchial mu-
cosal biopsies from severe COPD patients. A 
reduced mRNA expression of Smad7 was ob-
served in bronchial biopsies of COPD stage II 
patients in comparison with controls, but no sig-
nificant change was observed for Smad3 and 4. 
The study did not detect Smad2 transcription in 
the bronchial biopsies tested. In contrast, Zand-
voort and colleagues (47) verified Smad2 pro-
tein expression, but found no significant differ-
ences between controls and COPD. Increased 
presence of TGFβ1 in the parenchyma may 
protect against emphysema as demonstrated in 
a mouse model, where constitutive expression 
of TGFβ1 prevented emphysema development. 
Absence of proper Smad3 signaling results in 
an ineffective repair response to damage in the 
lung, reduction of suppression of expression of 
MMPs, and susceptibility to airspace enlarge-
ment and emphysema. Disregulation of MMP 
expression has been shown as a key feature of 
smoke-exposed human lung fibroblasts in an in 
vitro model of COPD pathogenesis (48). More-
over Smad3-deficient animals are protected 
from fibrosis but are more susceptible to em-
physema: Smad3 null mice are resistant to 
bleomycin- and TGFβ-mediated fibrosis, but 
they develop spontaneous age-related airspace 
enlargement, consistent with emphysema, with 
a lack of ability to repair tissue damage appro-
priately (49). Studies on asthmatic patients 
showed increased levels of TGFβ1 and its 
transductor factors in the airways (50). Airway 
remodelling is one of the hallmark features of 
asthma. TGFβ appears to be implicated in ECM 
proteins deposition which characterizes 
asthma, especially collagen. Concentrations of 
the active form TGFβ1 are higher in bronchoal-
veolar lavage fluid (BAL) of patients with severe 
asthma compared with controls (51). Runyan 
and colleagues (52) found a cross talk between 
Smads and PI3K (Phosphoinositide 3-kinase) 
pathway that enhanced TGFβ-induced collagen 
type I expression in human mesangial cells. 
Recently, a different Smad2 activation was ob-
served between asthmatic and non-asthmatic 
airway smooth muscle cells (ASM) with levels 
of phosphorylated Smad2 significantly higher in 
the asthmatic cells in comparison to the non-
asthmatic (53). Expression levels of Smad7 in 
bronchial epithelial cells of asthmatic patients 
were inversely correlated with basement mem-
brane thickness and airway hyperresponsive-
ness in asthmatic subjects, suggesting an ac-
tive remodelling process resulting in a thick-
ened basement membrane (54).  
 
Concluding remarks 
In the last ten years the attention of scientists 
for Smad proteins has increased, in view of 

their prominent roles in the pathogenesis of 
lung diseases. Studies on Smads have started 
to explain their potential role in regulation and 
inhibition of TGFβ effects. Modifications of 
Smad pathways or of their receptor systems, 
with a combination of genetic and environ-
mental factors, could contribute to development 
of several TGFβ-dependent diseases. All these 
information will expand the complex network 
about the TGFβ signaling and thereby the po-
tential role of Smad proteins in human respira-
tory diseases, potentially helping to design 
therapeutic strategies that should target TGFβ 
signaling. 
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